De novo and comparative transcriptome analysis of cultivated and wild spinach

نویسندگان

  • Chenxi Xu
  • Chen Jiao
  • Yi Zheng
  • Honghe Sun
  • Wenli Liu
  • Xiaofeng Cai
  • Xiaoli Wang
  • Shuang Liu
  • Yimin Xu
  • Beiquan Mou
  • Shaojun Dai
  • Zhangjun Fei
  • Quanhua Wang
چکیده

Spinach (Spinacia oleracea L.) is an economically important green leafy vegetable crop. In this study, we performed deep transcriptome sequencing for nine spinach accessions: three from cultivated S. oleracea, three from wild S. turkestanica and three from wild S. tetrandra. A total of approximately 100 million high-quality reads were generated, which were de novo assembled into 72,151 unigenes with a total length of 46.5 Mb. By comparing sequences of these unigenes against different protein databases, nearly 60% of them were annotated and 50% could be assigned with Gene Ontology terms. A total of 387 metabolic pathways were predicted from the assembled spinach unigenes. From the transcriptome sequencing data, we were able to identify a total of ~320,000 high-quality single nucleotide polymorphisms (SNPs). Phylogenetic analyses using SNPs as well as gene expression profiles indicated that S. turkestanica was more closely related to the cultivated S. oleracea than S. tetrandra. A large number of genes involved in responses to biotic and abiotic stresses were found to be differentially expressed between the cultivated and wild spinach. Finally, an interactive online database (http://www.spinachbase.org) was developed to allow the research community to efficiently retrieve, query, mine and analyze our transcriptome dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress

Spinach (Spinacia oleracea) has cold tolerant but heat sensitive characteristics. The spinach variety 'Island,' is suitable for summer periods. There is lack molecular information available for spinach in response to heat stress. In this study, high throughput de novo transcriptome sequencing and gene expression analyses were carried out at different spinach variety 'Island' leaves (grown at 24...

متن کامل

Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions

Spinach is an important leafy vegetable enriched with multiple necessary nutrients. Here we report the draft genome sequence of spinach (Spinacia oleracea, 2n=12), which contains 25,495 protein-coding genes. The spinach genome is highly repetitive with 74.4% of its content in the form of transposable elements. No recent whole genome duplication events are observed in spinach. Genome syntenic an...

متن کامل

Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea

The RNA-sequencing followed by de-novo transcriptome assembly identified 11621 genes differentially xpressed in roots vs. shoots of a wild perennial Cicer microphyllum. Comparative analysis of transcriptomes between microphyllum and cultivated desi cv. ICC4958 detected 12772 including 3242 root- and 1639 shoot-specific microphyllum genes with 85% expression validation success rate. Transcriptio...

متن کامل

Comparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species

Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015